1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
| import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import os
def save(saver, sess, logdir, step): model_name = 'model' checkpoint_path = os.path.join(logdir, model_name) saver.save(sess, checkpoint_path, global_step=step) print('The checkpoint has been created.')
def xavier_init(size): in_dim = size[0] xavier_stddev = 1. / tf.sqrt(in_dim / 2.) return tf.random_normal(shape=size, stddev=xavier_stddev)
X = tf.placeholder(tf.float32, shape=[None, 784])
D_W1 = tf.Variable(xavier_init([784, 128])) D_b1 = tf.Variable(tf.zeros(shape=[128]))
D_W2 = tf.Variable(xavier_init([128, 1])) D_b2 = tf.Variable(tf.zeros(shape=[1]))
theta_D = [D_W1, D_W2, D_b1, D_b2]
Z = tf.placeholder(tf.float32, shape=[None, 100])
G_W1 = tf.Variable(xavier_init([100, 128])) G_b1 = tf.Variable(tf.zeros(shape=[128]))
G_W2 = tf.Variable(xavier_init([128, 784])) G_b2 = tf.Variable(tf.zeros(shape=[784]))
theta_G = [G_W1, G_W2, G_b1, G_b2]
def sample_Z(m, n): return np.random.uniform(-1., 1., size=[m, n])
def generator(z): G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1) G_log_prob = tf.matmul(G_h1, G_W2) + G_b2 G_prob = tf.nn.sigmoid(G_log_prob)
return G_prob
def discriminator(x): D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1) D_logit = tf.matmul(D_h1, D_W2) + D_b2 D_prob = tf.nn.sigmoid(D_logit)
return D_prob, D_logit
def plot(samples): fig = plt.figure(figsize=(4, 4)) gs = gridspec.GridSpec(4, 4) gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples): ax = plt.subplot(gs[i]) plt.axis('off') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(sample.reshape(28, 28), cmap='Greys_r') return fig
G_sample = generator(Z) D_real, D_logit_real = discriminator(X) D_fake, D_logit_fake = discriminator(G_sample)
D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real))) D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake))) D_loss = D_loss_real + D_loss_fake G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake)))
dreal_loss_sum = tf.summary.scalar("dreal_loss", D_loss_real) dfake_loss_sum = tf.summary.scalar("dfake_loss", D_loss_fake) d_loss_sum = tf.summary.scalar("d_loss", D_loss) g_loss_sum = tf.summary.scalar("g_loss", G_loss)
summary_writer = tf.summary.FileWriter('snapshots/', graph=tf.get_default_graph())
D_solver = tf.train.AdamOptimizer().minimize(D_loss, var_list=theta_D) G_solver = tf.train.AdamOptimizer().minimize(G_loss, var_list=theta_G)
mb_size = 128 Z_dim = 100
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
sess = tf.Session() sess.run(tf.global_variables_initializer())
if not os.path.exists('out/'): os.makedirs('out/')
if not os.path.exists('snapshots/'): os.makedirs('snapshots/')
saver = tf.train.Saver(var_list=tf.global_variables(), max_to_keep=50)
i = 0
for it in range(1000000): if it % 1000 == 0: samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim)})
fig = plot(samples) plt.savefig('out/{}.png'.format(str(i).zfill(3)), bbox_inches='tight') i += 1 plt.close(fig) X_mb, _ = mnist.train.next_batch(mb_size) _, D_loss_curr, dreal_loss_sum_value, dfake_loss_sum_value, d_loss_sum_value = sess.run([D_solver, D_loss, dreal_loss_sum, dfake_loss_sum, d_loss_sum], feed_dict={X: X_mb, Z: sample_Z(mb_size, Z_dim)}) _, G_loss_curr, g_loss_sum_value = sess.run([G_solver, G_loss, g_loss_sum], feed_dict={Z: sample_Z(mb_size, Z_dim)}) if it%100 ==0: summary_writer.add_summary(dreal_loss_sum_value, it) summary_writer.add_summary(dfake_loss_sum_value, it) summary_writer.add_summary(d_loss_sum_value, it) summary_writer.add_summary(g_loss_sum_value, it) if it % 1000 == 0: save(saver, sess, 'snapshots/', it) print('Iter: {}'.format(it)) print('D loss: {:.4}'. format(D_loss_curr)) print('G_loss: {:.4}'.format(G_loss_curr)) print()
|